Waters[.]

XBridge and XBridge Premier Columns

CONTENTS

I. GETTING STARTED

- a. Column Installation
- **b.** Column Equilibration
- c. Initial Column Efficiency Determination

II. COLUMN USE

- a. Guard Columns
- **b. Sample Preparation**
- c. Operating pH Limits
- d. Solvents
- e. Pressure
- f. Temperature

III. SCALING UP/DOWN ISOCRATIC METHODS

- IV. TROUBLESHOOTING
- V. COLUMN CLEANING, REGENERATION AND STORAGE
 - a. Cleaning and Regeneration
 - b. Storage

VI. CONNECTING THE COLUMN TO THE HPLC

- a. Column Connectors and System Tubing Considerations
- b. Measuring System Bandspreading Volume and System Variance
- c. Measuring Gradient Delay Volume (or Dwell Volume)

VII. ADDITIONAL INFORMATION

- a. Use of Narrow-Bore (3.0 mm i.d. Columns)
- b. Impact of Bandspreading Volume on 2.1 mm i.d. Column Performance
- c. Non-Optimized vs. Optimized LC/MS/MS System: System Modification Recommendations
- d. Waters Small Particle Size (2.5 μm) Columns - Fast Chromatography
- e. Getting Started with XBridge HILIC Columns
- f. Getting Started with XBridge Amide Columns

Thank you for choosing a Waters[™] XBridge[™] and/or XBridge Premier Column. The XBridge BEH[™] packing materials were designed to provide excellent peak shape, high efficiency, and excellent stability for acidic and basic mobile phases. The XBridge packing materials are manufactured in a cGMP, ISO 9001:2000 certified plant using ultra pure reagents. Each batch of XBridge material is tested chromatographically with acidic, basic and neutral analytes and the results are held to narrow specification ranges to assure excellent, reproducible performance. Every column is individually tested and a Performance Test Chromatogram is provided with each column along with the Certificate of Acceptance.

XBridge Premier BEH Columns utilize MaxPeak[™] High Performance Surfaces, an innovative technology designed to increase analyte recovery, sensitivity, and reproducibility by minimizing analyte/surface interactions that can lead to sample losses. The XBridge Premier BEH Column is offered with or without a VanGuard[™] Fully-Integrated Technology [FIT] Cartridge.

To address the desire to extend the operating lifetimes of analytical columns, the VanGuard FIT Cartridge is designed to prevent the non-desired introduction of sample matrix or

particulates onto the column without degrading the separation. It can be easily replaced to restore separation performance and extend the analytical column's lifetime.

I. GETTING STARTED

With each XBridge BEH Column, a Certificate of Analysis and Performance Test Chromatogram are available in the column box or on request at <u>waters.com/coa</u>. The Certificate of Analysis is specific to each batch of packing material and includes the batch number, analysis of unbonded particles, analysis of bonded particles, and chromatographic results and conditions. The Performance Test Chromatogram is specific to each individual column and contains the batch number, column serial number, USP tangent efficiency, USP tailing factor, retention factor, and chromatographic conditions. These data should be stored for future reference.

A. COLUMN INSTALLATION (WITH OR WITHOUT A VANGUARD FIT CARTRIDGE)

Note: Prior to handling XBridge BEH Columns and any chemical, consult with your safety department and/or local regulations on the use of proper protective equipment.

- The flow rates given in the procedure below are for a typical 5 µm packing in a 4.6 mm i.d. column. Scale the flow rate up or down accordingly based upon the column i.d., length, particle size and backpressure of the XBridge Column being installed. See Scaling Up/Down Isocratic Separations section for calculating flow rates when changing column i.d and/or length. See Connecting the Column to the HPLC for a more detailed discussion on HPLC Column and MaxPeak Premier Column connections.
- Purge the pumping system of any buffer-containing mobile phases and connect the inlet end of the column to the injector outlet. An arrow on the column identification label indicates the correct direction of solvent flow.
- Flush column with 100% organic mobile phase (methanol or acetonitrile) by setting the pump flow rate to 0.1 mL/min. and increase the flow rate to 1 mL/min over 5 minutes.
- 4. When the mobile phase is flowing freely from the column outlet, stop the flow and attach the column outlet to the detector. This prevents entry of air into the detection system
- 5. Gradually increase the flow rate as described in step 2.
- 6. Once a steady backpressure and baseline have been achieved, proceed to the next section.

B. COLUMN EQUILIBRATION

XBridge Columns are shipped in 100% acetonitrile. It is important to ensure mobile phase compatibility before changing to a different mobile phase system. Equilibrate the column with a minimum of 10 column volumes of the mobile phase to be used (refer to Table 1 for a listing of empty column volumes).

Note: If mobile phase additives are present in low concentrations (e.g., ionpairing reagents), 100 to 200 column volumes may be required for complete equilibration. In addition, mobile phases that contain formate (e.g., ammonium formate, formic acid, etc.) may also require longer initial column equilibration times.

To avoid precipitating out mobile phase buffers on your column or in your system, flush the column with five column volumes of a water/organic solvent mixture, using the same or lower solvent content as in the desired buffered mobile phase. (For example, flush the column and HPLC system with 60% methanol in water prior to introducing 60% methanol/40% buffer mobile phase).

For XBridge HILIC Columns, flush with 50 column volumes of 50:50 acetonitrile:water with 10 mM final buffer concentration. For XBridge HILIC Amide Columns, flush with 50 column volumes of 60:40 acetonitrile:aqueous. Prior to the first injection, equilibrate with 20 column volumes of initial mobile phase conditions (refer to Table 1 for a list of column volumes). See "Getting Started with XBridge HILIC Columns" or "Getting Started with XBridge HILIC Amide Columns" for additional information.

C. INITIAL COLUMN EFFICIENCY DETERMINATION

- Perform an efficiency test on the column before using it. This test may consist of:
 - a. An analyte test mixture that is commonly used in your laboratory, and/or
 - b. The analyte mixture as found on the "Performance Test Chromatogram" that accompanied your column.

Note: If (b) is performed, the isocratic efficiencies measured in your laboratory may be less than those given on the Waters "Performance Test Chromatogram." This is normal. The Waters isocratic Column testing systems have been modified to achieve extremely low system volumes. This presents a more challenging test of how well the column was packed, and guarantees the highest quality packed column.

These special testing systems have been modified to such an extent that they are not commercially viable and have limited method flexibility other than isocratic column testing.

	Column Internal Diameter (mm)								
Column Length (mm)	1.0	2.1	3.0	4.6	7.8	10	19	30	50
20	-	0.07	0.14	0.33	-	-	-	-	-
30	-	0.10	0.21	0.50	-	2.4	8.5	-	-
50	0.04	0.17	0.35	0.83	2.4	3.9	14	35	98
100	0.08	0.35	0.71	1.7	4.8	7.8	28	70	-
150	0.12	0.52	1.0	2.5	7.2	12	42	106	294
250	-	0.87	1.8	4.2	-	20	70	176	490

Table 1. Empty Column Volumes in mL (multiply by 10 for flush solvent volumes)

- 1. Determine the number of theoretical plates (N) and use this value for periodic comparisons.
- 2. Repeat the test at predetermined intervals to track column performance over time. Slight variations maybe obtained on two different HPLC systems due to the quality of the connections, operating environment, system electronics, reagent quality, column condition and operator technique.

D. COLUMN QR CODE

The quick reference (QR) code that is located on the column label provides column-specific information (*i.e.*, the part and serial numbers that are unique identifiers for the column), and its encoding follows a widely adopted industry-standard.

- 1. Scan QR code using any device that is capable of scanning QR codes (*i.e.*, for smart phones and tablets, use the built-in camera app).
- 2. Be directed to the column's information hub on waters.com.
- 3. Access technical and scientific information for the column (*i.e.*, certificate of analysis, application notes).

E. XBRIDGE COLUMNS - VANGUARD PROTECTION

For XBridge BEH Columns, a separate guard holder and guard cartridge can be easily attached to the inlet of the column. For more information on VanGuard products, visit waters.com/vanguard.

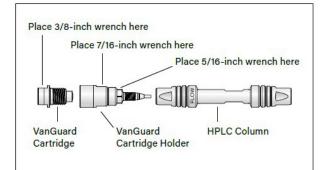


Figure 1. Connection of the VanGuard Cartridge Column, VanGuard Cartridge Holder, and analytical column.

F. REPLACING THE VANGUARD FIT CARTRIDGE

The VanGuard FIT Cartridge is designed specifically for XBridge Premier Columns.

For the XBridge Premier Columns that have a VanGuard FIT Cartridge, the VanGuard FIT Cartridge may be replaced using two 3/8" wrenches. Simply apply the wrenches to the flats on the guard and column end nut and turn in a counter clockwise direction (see Figure 2). This will allow the VanGuard FIT Cartridge to be removed and appropriately discarded when following good laboratory practices.

A new VanGuard FIT Cartridge can now be used to replace the discarded one. Hand-tighten the new cartridge in a clockwise direction, then tighten using two 3/8" wrenches. Proper sealing should not require more than a 1/4 turn past the hand-tightened position.

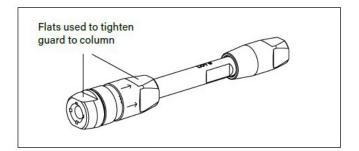


Figure 2. Recommended 3/8" wrench placement to remove the VanGuard FIT Cartridge from the XBridge Premier VanGuard FIT Column.

Name of Column Particle Size		Pore Diameter	Surface Area	pH Limits	Temperature Limits		Surface	Carbon Load
		Diamotor	, nou		Low pH	High pH		Loud
XBridge C ₁₈	2.5, 3.5, 5 μm	130 Å	185 m²/g	1–12	80 °C	60 °C	3.1 µmol/m²	18%
XBridge C ₈	2.5, 3.5, 5 μm	130 Å	185 m²/g	1–12	60 °C	60 °C	3.1 µmol/m²	13%
XBridge Phenyl	2.5, 3.5, 5 μm	130 Å	185 m²/g	1–12	80 °C	60 °C	3.0 µmol/m²	15%
XBridge Shield RP18	2.5, 3.5, 5 μm	130 Å	185 m²/g	2–11	50 °C	45 °C	3.2 µmol/m²	17%
XBridge HILIC	2.5, 3.5, 5 µm	130 Å	185 m²/g	1–9	45 °C	45 °C	-	-
XBridge Amide	3.5 µm	130 Å	185 m²/g	2–11	90 °C	90 °C	7.5 μmol/m²	12%

Table 2: Recommended pH and temperature Limits for XBridge Columns at Ambient Temperatures

II. COLUMN USE

To ensure the continued high performance of XBridge Columns, follow these guidelines:

A. GUARD COLUMNS

Use a Waters Guard Column of matching chemistry and particle size between the injector and main column. It is important to use a high-performance matching guard column to protect the main column while not compromising or changing the analytical resolution.

Guard columns need to be replaced at regular intervals as determined by sample contamination. When system backpressure steadily increases above a set pressure limit, it is usually an indication that the guard column should be replaced. A sudden appearance of split peaks is also indicative of a need to replace the guard column.

B. SAMPLE PREPARATION

- Sample impurities often contribute to column contamination. One option to avoid this is to use Waters Oasis[®] Solid-phase Extraction Cartridges/Columns or Sep-Pak[®] Cartridges of the appropriate chemistry to clean up the sample before analysis.
- 2. It is preferable to prepare the sample in the operating mobile phase or a mobile phase that is weaker (less organic modifier) than the mobile phase for the best peak shape and sensitivity.
- 3. If the sample is not dissolved in the mobile phase, ensure that the sample, solvent and mobile phases are miscible in order to avoid sample and/or buffer precipitation.

- 4. Filter sample with 0.2 µm filters to remove particulates. If the sample is dissolved in a solvent that contains an organic modifier (*e.g.*, acetonitrile, methanol, etc.) ensure that the filter material does not dissolve in the solvent. Contact the filter manufacturer with solvent compatibility questions. Alternatively, centrifugation for 20 minutes at 8,000 rpm, followed by the transfer of the supernatant liquid to an appropriate vial, could be considered.
- 5. For Hydrophilic Interaction Chromatography (HILIC) separations, the samples must be prepared in 100% organic solvents (e.g., acetonitrile). See "Getting Started with XBridge HILIC Columns" or "Getting Started with XBridge Amide Columns" for additional information.

C. pH RANGE

The recommended operating pH limits for XBridge BEH Columns are listed in Table 2. A listing of commonly used buffers and additives is given in Table 3. Additionally, the column lifetime will vary depending upon the operating temperature, the type and concentration of buffer used.

D. SOLVENTS

To maintain maximum column performance, use high quality chromatography grade solvents. Filter all aqueous buffers prior to use. Pall Gelman Laboratory Acrodisc[®] Filters are recommended. Solvents containing suspended particulate materials will generally clog the outside surface of the inlet distribution frit of the column. This will result in higher operating pressure and poor performance.

Degas all solvents thoroughly before use to prevent bubble formation in the pump and detector. The use of an on-line degassing unit is also recommended. This is especially important when running low pressure gradients since bubble formation can occur as a result of aqueous and organic solvent mixing during the gradient.

E. PRESSURE

XBridge Columns can tolerate pressures of up to 6,000 psi (400 bar or 40 Mpa) although pressures greater than 4,000–5,000 psi should be avoided in order to maximize column and system lifetimes.

F. TEMPERATURE

Temperatures between 20 °C–80 °C (up to 90 °C for XBridge Amide Columns) are recommended for operating XBridge Columns in order to enhance selectivity, lower solvent viscosity and increase mass transfer rates. However, any temperature above ambient will have a negative effect on lifetime which will vary depending on the pH and buffer conditions used. Under HILIC conditions XBridge Amide Columns can be used at high pH and at high temperatures without issues (see recommended conditions in Getting Started with XBridge Amide section). See Table 2 for recommended pH and temperature limits.

III. SCALING UP/DOWN ISOCRATIC METHODS

The following formulas will allow scale up or scale down, while maintaining the same linear velocity, and provide new sample loading values:

If column i.d. and length are altered:

$$F_2 = F_1 (r_2/r_1)^2$$

 $Load_{2} = Load_{1} (r_{2}/r_{1})^{2} (L_{2}/L_{1})$

Injection volume₂ = Injection volume₁ $(r_2/r_1)^2 (L_2/L_1)$

Where: r = Radius of the column

F = Flow rate

- L = Length of column
- 1 = Original, or reference column
- 2 = New column

IV. TROUBLESHOOTING

Changes in retention time, resolution, or backpressure are often due to column contamination. See the Column Cleaning, Regeneration and Storage section of this Care and Use Manual. Information on column troubleshooting problems may be found in HPLC Columns Theory, Technology and Practice, U.D. Neue, (Wiley-VCH, 1997), the Waters HPLC Troubleshooting Guide (Literature code #720000181EN) or visit the Waters Corporation website for information on seminars (waters.com).

V. COLUMN CLEANING, REGENERATION AND STORAGE

A. CLEANING AND REGENERATION

Changes in peak shape, peak splitting, shoulders on the peak, shifts in retention, change in resolution or increasing backpressure may indicate contamination of the column. Flushing with a neat organic solvent, taking care not to precipitate buffers, is usually sufficient to remove the contaminant. If the flushing procedure does not solve the problem, purge the column using the following cleaning and regeneration procedures.

Use the cleaning routine that matches the properties of the samples and/or what you believe is contaminating the column (see Table 4). Flush columns with 20 column volumes each of HPLC-grade solvents (*e.g.*, 80 mL total for 4.6 x 250 mm column) listed in Table 4. Increasing mobile phase temperature to 35–55 °C increases cleaning efficiency. If the column performance is poor after cleaning and regeneration, call your local Waters office for additional support. Flush XBridge HILIC Columns with 50:50 acetonitrile:water to remove polar contaminants. If this flushing procedure does not solve the problem, purge the column with 5:95 acetonitrile:water.

Table 3: Buffer Recommendations for Using XBridge Columns from pH 1 to 12

Additive/Buffer	рКа	Buffer Range (±1 pH unit)	Volatility	Used for Mass Spec	Comments
TFA	0.3		Volatile	Yes	lon pair additive, can suppress MS signal, used in the 0.02–0.1% range.
Acetic Acid	4.76		Volatile	Yes	Maximum buffering obtained when used with ammonium acetate salt. Used in 0.1–1.0% range.
Formic Acid	3.75		Volatile	Yes	Maximum buffering obtained when used with ammonium formate salt. Used in 0.1–1.0% range.
Acetate (NH ₄ CH ₂ COOH)	4.76	3.76-5.76	Volatile	Yes	Used in the 1–10 mM range. Note that sodium or potassium salts are not volatile.
Formate (NH ₄ COOH)	3.75	2.75-4.75	Volatile	Yes	Used in the 1–10 mM range. Note that sodium or potassium salts are not volatile.
Phosphate 1	2.15	1.15-3.15	Non-volatile	No	Traditional low pH buffer, good UV transparency.
Phosphate 2	7.2	6.20-8.20	Non-volatile	No	Above pH 7, reduce temperature/concentration and use a guard column to maximize lifetime.
Phosphate 3	12.3	11.3–13.3	Non-volatile	No	Above pH 7, reduce temperature/concentration and use a guard column to maximize lifetime.
4-Methylmorpholine	~8.4t	7.4-9.4	Volatile	Yes	Generally used at 10 mM or less.
Ammonia (NH₄OH) Ammonium Bicarbonate	9.2 10.3 (HCO ₃ -) 9.2 (NH ₄ +)	8.2-10.2 8.2-11.3	Volatile Volatile	Yes Yes	Used in the 5–10 mM range (for MS work keep source >150 °C). Adjust pH with ammonium hydroxide or acetic acid. Good buffering capacity at pH 10 <i>Note: use ammonium bicarbonate</i> (NH_4HCO_3), <i>not ammonium carbonate</i> ((NH_4) ² CO_3)
Ammonium (Acetate)	9.2	8.2-10.2	Volatile	Yes	Used in the 1–10 mM range.
Ammonium (Formate)	9.2	8.2-10.2	Volatile	Yes	Used in the 1–10 mM range.
Borate	9.2	8.2-10.2	Non-volatile	No	Reduce temperature/concentration and use a guard column to maximize lifetime.
CAPSO	9.7	8.7–10.7	Non-volatile	No	Zwitterionic buffer, compatible with acetonitrile, used in the 1–10 mM range. Low odor.
Glycine	2.4, 9.8	8.8–10.8	Non-volatile	No	Zwitterionic buffer, can give longer lifetimes than borate buffer.
1-Methylpiperidine	10.2	9.3–11.3	Volatile	Yes	Used in the 1-10 mM range.
CAPS	10.4	9.5-11.5	Non-volatile	No	Zwitterionic buffer, compatible with acetonitrile, used in the 1-10 mM range. Low odor.
Triethylamine (as acetate salt)	10.7	9.7–11.7	Volatile	Yes	Used in the 0.1–1.0% range. Volatile only when titrated with acetic acid (not hydrochloric or phosphoric). Used as ion-pair for DNA analysis at pH 7–9.
Pyrrolidine	11.3	10.3–12.3	Volatile	Yes	Mild buffer, gives long lifetime.

Note: Working at the extremes of pH, temperature and/or pressure will result in shorter column lifetimes.

To clean polar contaminants from XBridge Amide Columns, run a 25 minute gradient from 0–100% water. Please note that as aqueous concentration increases, backpressure will rapidly increase as well. Reduce flow rate when operating at greater than 60% aqueous. Repeat if necessary.

Table 4: Reversed-Phase Column Cleaning Sequence

Polar Samples	Non-polar Samples	Proteinaceous Samples		
1. water	1. isopropanol (or anappropriate isopropanol/water mixture*)	Option 1: Inject repeated aliquots of dimethyl sulfoxide (DMSO)		
2. methanol	2. tetrahydrofuran (THF)	Option 2: gradient of 10% to 90% B where:		
3. tetrahydrofuran (THF)	3. dichloromethane	A = 0.1% trifluoroacetic acid (TFA) in water		
4. methanol	4. hexane	B = 0.1% trifluoroacetic acid (TFA) in acetonitrile (CH3CN)		
5. water	5. isopropanol (followed by an appropriate isopropanol/water mixture*)	Option 3: Flush column with 7 M guanidine hydrochloride, or 7 M urea		
6. mobile phase	6. mobile phase			

* Use low organic solvent content to avoid precipitating buffers.

** Prior to using THF or Hexane, ensure your system is compatible with these solvents. THF or Hexane should only be considered when the column cannot be cleaned by running neat, reversed-phase organic solvents such as acetonitrile. Reduce flow rate, lower operating temperatures, and limit system exposure to THF and/or Hexane.

B. STORAGE

For periods longer than four days at room temperature, store the reversed-phase XBridge columns and XBridge Amide columns in 100% acetonitrile. Immediately after use with elevated temperatures and/or at pH extremes, store in 100% acetonitrile for the best column lifetime. Do not store columns in highly aqueous (<20% organic) mobile phases, as this may promote bacterial growth. If the mobile phase contained a buffer salt, flush the column with 10 column volumes of HPLC grade water (see Table 1 for common column volumes) and replace with 100% acetonitrile for storage. Failure to perform this intermediate step could result in precipitation of the buffer salt in the column or system when 100% acetonitrile is introduced. Run a gradient to 100% ACN in order to flush all aqueous solvent from an XBridge Amide column prior to storage in 100% ACN. Completely seal column to avoid evaporation and drying out of the bed. For periods longer than four days, store XBridge HILIC columns in 95:5 acetonitrile:water. Do not store in buffered solvent. If the mobile phase contained a buffered salt, flush the column with 10 column volumes of 95:5 acetonitrile:water (see Table 1 for common column volumes).

Note: If a column has been run with a mobile phase that contains formate (e.g., ammonium formate, formic acid, etc.) and is then flushed with 100% acetonitrile, slightly longer equilibration times may be necessary when the column is re-installed and run again with a formate-containing mobile phase.slightly longer equilibration times may be necessary when the column is re-installed and run again with a formate-containing mobile phase.

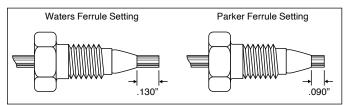
VI. CONNECTING THE COLUMN TO THE HPLC

A. COLUMN CONNECTORS AND SYSTEM TUBING CONSIDERATIONS

Tools needed:

- 3/8 inch wrench
- 5/16 inch wrench

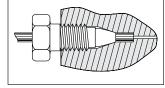
Handle the column with care. Do not drop or hit the column on a hard surface as it may disturb the bed and affect its performance.


- Correct connection of 1/16 inch outer diameter stainless steel tubing leading to and from the column is essential for highquality chromatographic results.
- 2. When using standard stainless steel compression screw fittings, it is important to ensure proper fit of the 1/16 inch outer diameter stainless steel tubing. When tightening or loosening the compression screw, place a 5/16 inch wrench on the compression screw and a 3/8 inch wrench on the hex head of the column endfitting.

Note: If one of the wrenches is placed on the column tube flat during this process, the endfitting will be loosened and leak.

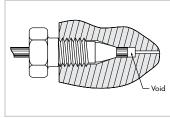
- If a leak occurs between the stainless steel compression screw fitting and the column endfitting, a new compression screw fitting, tubing and ferrule must be assembled.
- 4. An arrow on the column identification label indicates correct direction of solvent flow.

Correct connection of 1/16 inch outer diameter stainless steel tubing leading to and from the column is essential for high-quality chromatographic results. To obtain a void-free connection, the tubing must touch the bottom of the column endfitting. It is important to realize that extra column peak broadening due to voids can destroy an otherwise successful separation. The choice of appropriate column connectors and system tubing is discussed in detail below.


Figure 1: Waters and Parker Ferrule Types

Due to the absence of an industry standard, various column manufacturers have employed different types of chromatographic column connectors. The chromatographic separation can be negatively affected if the style of the column endfittings does not match the existing tubing ferrule settings. This section explains the differences between Waters style and Parker style ferrules and endfittings (Figure 1). Each endfitting style varies in the required length of the tubing protruding from the ferrule. The XBridge Column is equipped with Waters style endfittings that require a 0.130 inch ferrule depth. The XBridge Premier column is equipped with Parker style endfittings that require a 0.090 inch ferrule depth. It is critical to set the ferrule depth properly prior to installing the XBridge or XBridge Premier Column for optimal performance.

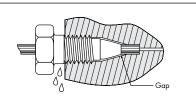
In a proper tubing/column connection (Figure 2), the tubing touches the bottom of the column endfitting, with no void between them.


Figure 2: Proper Tubing/Column Connection

The presence of a void in the flow stream reduces column performance. This can occur if a Parker ferrule is connected to a Waters style endfitting (Figure 3).

Note: A void appears if tubing with a Parker ferrule is connected to a Waters style column.

Figure 3: Parker Ferrule in a Waters Style Endfitting

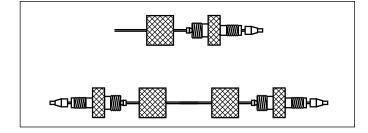


There is only one way to fix this problem: Cut the end of the tubing with the ferrule, place a new ferrule on the tubing and make a new connection. Before tightening the screw, make sure that the tubing bottoms out in the endfitting of the column.

Conversely, if tubing with a Waters ferrule is connected to a column with Parker style endfitting, the end of the tubing will bottom out before the ferrule reaches its proper sealing position. This will leave a gap and create a leak (Figure 4).

Note: The connection leaks if a Waters ferrule is connected to a column with a Parker style endfitting.

Figure 4: Waters Ferrule in a Parker Style Endfitting



There are two ways to fix the problem:

- Tighten the screw a bit more. The ferrule moves forward, and reaches the sealing surface. Do not overtighten since this may end in breaking the screw.
- 2. Cut the tubing, replace the ferrule and make a new connection.

Alternatively, replace the conventional compression screw fitting with an all-in-one PEEK® fitting (Waters part number PSL613315) that allows resetting of the ferrule depth. Another approach is to use a Keystone, Inc. SLIPFREE® Connector to always ensure the correct fit. The fingertight SLIPFREE connectors automatically adjust to fit all compression screw type fittings without the use of tools (Figure 5).

Figure 5: Single and Double SLIPFREE Connectors SLIPFREE Connector Features:

Tubing pushed into endfitting, thereby guaranteeing a void-free connection

- Connector(s) come(s) installed on tubing
- Various tubing IDs and lengths available
- Fingertight to 10,000 psi never needs wrenches
- Readjusts to all column endfittings
- Compatible with all commercially available endfittings
- Unique design separates tube-holding function from sealing function

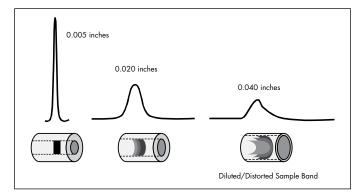

SLIPFREE Type	Tubing Internal Diameter						
Tubing Length	0.005″	0.010″	0.020″				
Single 6 cm	PSL 618000	PSL 618006	PSL 618012				
Single 10 cm	PSL 618002	PSL 618008	PSL 618014				
Single 20 cm	PSL 618004	PSL 618010	PSL 618016				
Double 6 cm	PSL 618001	PSL 618007	PSL 618013				
Double 10 cm	PSL 618003	PSL 618009	PSL 618015				
Double 20 cm	PSL 618005	PSL 618001	PSL 618017				

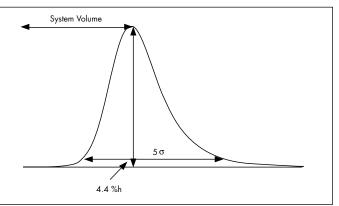
Table 5: Waters Part Numbers for SLIPFREE Connectors

Band Spreading Minimization

Figure 6 shows the influence of tubing internal diameter on system band spreading and peak shape. As can be seen, the larger tubing diameter causes excessive peak broadening and lower sensitivity.

Figure 6: Effect of Connecting Tubing on System

B. MEASURING SYSTEM BANDSPREADING VOLUME AND SYSTEM VARIANCE


This test should be performed on an HPLC system with a single wavelength UV detector (not a Photodiode Array (PDA)).

- 1. Disconnect column from system and replace with a zero dead volume union.
- 2. Set flow rate to 1 mL/min.
- Dilute a test mix in mobile phase to give a detector sensitivity of 0.5–1.0 AUFS (system start up test mix can be used which contains uracil, ethyl and propyl parabens; Waters part number WAT034544).
- 4. Inject 2 to 5 μ L of this solution.
- 5. Measure the peak width at 4.4% of peak height (5-sigma method):

5-sigma Bandspreading (μ L) = Peak Width (min) x Flow Rate (mL/min) x (1000 μ L/1 mL)

System Variance $(\mu L^2) = (5$ -sigma bandspreading)² / 25

Figure 7: Determination of System Bandspreading

Volume Using 5-Sigma Method

In a typical HPLC system, the Bandspreading Volume should be no greater than 100 μ L ± 30 μ L (or Variance of 400 μ L² ± 36 μ L²). In a microbore (2.1mm i.d.) system, the Bandspreading Volume should be no greater than 20 to 40 μ L (or Variance no greater than 16 μ L² to 64 μ L²).

C. MEASURING GRADIENT DELAY VOLUME (OR DWELL VOLUME)

For successful gradient-method transfers the gradient delay volumes should be measured using the same method on both HPLC systems. The procedure below describes a method for determining the gradient delay volumes.

- 1. Replace the column with a zero dead volume union.
- 2. Prepare mobile phase A (pure solvent, such as methanol) and mobile phase B (mobile phase A with a UV absorbing sample, such as (v/v) 0.1% acetone in methanol).
- 3. Equilibrate the system with mobile phase A until a stable baseline is achieved.
- 4. Set the detector wavelength to the absorbance maximum of the probe (265 nm for acetone).
- Program a 0–100% B linear gradient in 10 min at 2 mL/min (the exact conditions are not critical; just make sure the gradient volume is at least 20 mL) with a hold at 100% B.
- 6. Determine the dwell time by first locating the time at the midpoint of the formed gradient $(t_{1/2})$ (half the vertical distance between the initial and final isocratic segments as shown in Figure 8).

- 7. Subtract half the gradient time $(1/2 t_g)$ (10 min/2 = 5 min in this example) from the gradient midpoint $(t_{1/2})$ to obtain the dwell time (t_p) .
- Convert the dwell time (t_D) to the dwell volume (V_D) by multiplying by the flow rate (F).

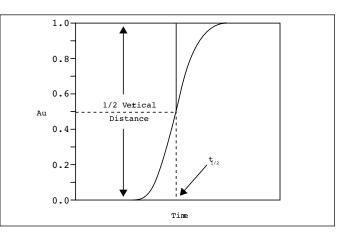
Dwell Volume $V_{D} = (t_{1/2} - \frac{1}{2} t_{a}) \times F$

For fast gradient methods, the gradient delay volume (or dwell volume) should be less than 1 mL. If the gradient delay volume is greater than 1 mL, see System Modification Recommendations section on how to reduce system volume.

VII. ADDITIONAL INFORMATION

A. AVAILABILITY AND USE OF ELECTRONIC COLUMN TAGS

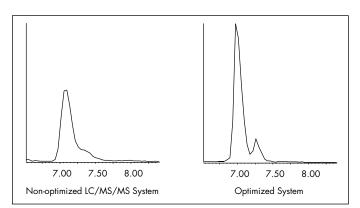
'Smart columns' are those enabled with electronic devices (tags) permanently affixed to enable identification and/ or tracking of column history and use information. These tags contain unique product identifying information, such as part and serial numbers, and product descriptions. Data residing on these devices is automatically imported by complementary Waters' systems, whether LC instrumentation or the Empower[™] Chromatographic Data System. This type of product data is used to aid in tracking and decision-making and troubleshooting, especially valuable for GLP/GMP compliant laboratories.


Tags come in two types: tethered like eCord[™] and untethered like eConnect[™]. The eCord is a standard feature on ACQUITY UPLC[™] and some UHPLC Columns for use with Waters ACQUITY[™] and Arc[™] UHPLC Systems. The eConnect Column Tag is an optional feature for HPLC columns and are designed to be used with the Waters Alliance[™] iS HPLC System.

Although the eCord chip and eConnect electronic column tag designs differ, they are designed to be robust and durable. When in operation, the eCord enabled column is connected via a cable tether to the system, allowing the electronic tag to be physically located outside the column manager. This placement reduces exposure to variable operating temperatures and solvents. In contrast, the eConnect tag is designed to be within the column manager, it is exposed to the full range of operating temperatures and may be exposed to solvents. Extensive testing has been conducted to ensure the performance of the eConnect tag in this environment. The durability of the eConnect tag was confirmed with various solvents and solutions with pH between 2 and 11. In the case of significant solvent exposure, communication between the tag and system can be temporarily interrupted. Allowing the eConnect tag to dry following solvent exposure,

evaporation should be suitable in most cases, will allow the tag performance to recover.

In addition, eConnect tags also offer a convenient, easy-to-use connection to the Waters website. Using an NFC enabled internet connected device to scan the eConnect tag will provide the user with a web address which will take them directly to the Waters product page for that consumable. This page provides access to product information, like Care and Use or Certificate of Analysis, as well as reorder and related product support.


Figure 8: Determination of Gradient Delay Volume

B. USE OF NARROW-BORE (3.0 MM I.D.) COLUMNS

This section describes how to minimize extra column effects and provides guidelines on maximizing the performance of a narrow-bore column in an HPLC system. A 3.0 mm i.d. narrow-bore column usually requires no system modifications. A 2.1 mm i.d. column, however, requires modifications to the HPLC system in order to eliminate excessive system bandspreading volume. Without proper system modifications, excessive system bandspreading volume causes peak broadening and has a large impact on peak width as peak volume decreases.

Figure 9: Non-Optimized vs. Optimized LC/MS/MS System

C. IMPACT OF BANDSPREADING VOLUME ON 2.1 MM I.D. COLUMN PERFORMANCE

System with 70 μ L bandspreading: 10,000 plates System with 130 μ L bandspreading: 8,000 plates (same column)

Note: Flow splitters after the column will introduce additional bandspreading.

System optimization, especially in a system that contains a flow splitter, can have dramatic effects on sensitivity and resolution. Optimization includes using correct ferrule depths and minimizing tubing inner diameters and lengths. An example is given in Figure 9 where system optimization resulted in a doubling of sensitivity and resolution of the metabolite in an LC/MS/MS system.

D. NON-OPTIMIZED VS. OPTIMIZED LC/MS/ MS SYSTEM: SYSTEM MODIFICATION RECOMMENDATIONS

1. Use a microbore detector flow cell with 2.1 mm i.d.columns.

Note: Detector sensitivity is reduced with the shorter flow cell path length in order to achieve lower bandspreading volume.

- 2. Minimize injector sample loop volume.
- 3. Use 0.009 inch (0.25 mm) tubing for rest of connections in standard systems and 0.005 inch (0.12 mm) tubing for narrowbore (2.1 mm i.d.) systems.
- 4. Use perfect (pre-cut) connections (with a variable depth inlet if using columns from different suppliers).
- Detector time constants should be shortened to less than 0.2 seconds.

E. WATERS SMALL PARTICLE SIZE (2.5 μM) COLUMNS – FAST CHROMATOGRAPHY

Waters columns that contain $2.5 \,\mu$ m particles provide faster and more efficient separations without sacrificing column lifetime. This section describes five parameters to consider when performing separations with columns containing $2.5 \,\mu$ m particles.

Note: Columns that contain 2.5 μm particles have smaller outlet frits to retain packing material. These columns should not be backflushed.

 Flow Rate—Compared with the 5 μm columns, columns with 2.5 μm particles have higher optimum flow rates. These columns are used when high efficiency and short analysis times are required. These higher flow rates, however, lead to increased backpressure.

Note: Use a flow rate that is practical for your system.

 Backpressure—Backpressures for columns with 2.5 μm particles are higher than for 5 μm columns with the same dimensions. Waters suggests using a shorter column to compensate for increased backpressure and to obtain a shorter analysis time.

- Temperature—Use a higher temperature to reduce backpressure caused by smaller particle sizes. The recommended temperature range for XBridge Columns is 20 °C to 60 °C. See Column Use section for a discussion of elevated temperature use with XBridge Columns.
- 4. Sampling Rate—Use a sampling rate of about 10 points per second or higher. A minimum of 20 points across the earliest eluting peak of interest is needed for optimum reproducibility.
- 5. Detector Time Constant—Use a time constant of 0.1 seconds or lower for fast analyses.

E. GETTING STARTED WITH XBRIDGE HILIC COLUMNS

- Because XBridge HILIC Columns do not posses a bonded phase, the pH operating range is 1 to 9, and they can be operated at temperatures up to 45 °C.
- 2. As with any LC column, operating at the extremes of pH, pressures and temperatures will result in decreased column lifetime.

Column Equilibration

- When column is first received, flush in 50% acetonitrile: 50% water with 10 mM final buffer concentration for 50 column volumes.
- 2. Equilibrate with 20 column volumes of initial mobile-phase conditions before making first injection.
- 3. If gradient conditions are used, equilibrate with 8–10 column volumes between injections.
- 4. Failure to appropriately equilibrate the column could result in drifting retention times.

Mobile-Phase Considerations

- Always maintain at least 5% polar solvent in the mobile phase or gradient (*e.g.*, 5% aqueous/5% methanol or 2% aqueous/3% methanol, etc.). This ensures that the XBridge Particle is always hydrated.
- 2. Maintain at least 40% organic solvent (*e.g.*, acetonitrile) in your mobile phase or gradient.
- Avoid phosphate salt buffers to avoid precipitation in HILIC mobile phases. Phosphoric acid is okay.
- 4. Buffers such as ammonium formate or ammonium acetate will produce more reproducible results than additives such as formic acid or acetic acid. If an additive (*e.g.*, formic acid, etc.) must be used instead of a buffer, use 0.2% (v:v) instead of 0.1%.
- 5. For best peak shape, maintain a buffer concentration of at least 10 mM in your mobile phase/gradient at all times.

Injection Solvents

- If possible, injection solvents should be 100% organic solvent of the initial mobile phase conditions. Water must be eliminated or minimized. Choose weak HILIC solvents such as acetonitrile, isopropanol, methanol, etc.
- A generic injection solvent is 75:25 acetonitrile:methanol. This is a good compromise between analyte solubility and peak shape. If solubility is still poor, 0.2% formic acid can be added.
- Avoid water and dimethylsulfoxide (DMSO) as injection solvents. These solvents will produce very poor peak shapes.
- 4. Exchange water or DMSO with acetonitrile by using reversed-phase solid-phase extraction (SPE). If this is not possible, dilute the water or DMSO with organic solvent.

Miscellaneous Tips

- As compared to Atlantis[™] HILIC Silica HPLC Columns, the XBridge HILIC Columns are approximately 20%less retentive for gradient analysis and 35 to 65% less retentive for isocratic analysis. This is due to the lower residual surface silanol concentration of the BEH Particle.
- In HILIC, it is important to remember that water is the strongest solvent. Therefore, it must be eliminated or minimized in the injection solvent.
- 3. For initial scouting conditions, run a gradient from 95% acetonitrile to 50% acetonitrile. If no retention occurs, run isocratically with 95:3:2 acetonitrile:isopropanol:aqueou s buffer.
- 4. Alternate polar solvents such as methanol, ethanol or isopropanol can also be used in place of water to increase retention.

F. GETTING STARTED WITH XBRIDGE AMIDE COLUMNS

Operating Ranges

- XBridge Amide Columns can be used routinely under HILIC conditions between pH 2 to 11, and they can be operated at temperatures up to 90 °C.
- 2. As with any LC column, operating at the extremes of pH, pressures and temperatures will result in decreased column lifetime.

Column Equilibration

- 1. When column is first received, flush in 60% acetonitrile: 40% aqueous (or initial starting conditons) for 50 column volumes.
- 2. Equilibrate with 20 column volumes of initial mobile phase conditions before making first injection.
- 3. If gradient conditions are used, equilibrate with 8-10 column volumes between injections.
- 4. Failure to appropriately equilibrate the column could result in drifting retention times.

Mobile Phase Considerations

- 1. Always maintain at least 5% polar solvent in the mobile phase or gradient (e.g., 5% aqueous, 5% methanol or 2% aqueous/3% methanol, etc.).
- 2. Maintain at least 40% organic solvent (e.g., acetonitrile) in your mobile phase or gradient.
- 3. At aqueous concentrations greater than 60%, lower flow rates should be used due to high backpressure. This includes all aqueous wash procedures.
- 4. Avoid phosphate salt buffers to avoid precipitation in HILIC mobile phases. Phosphoric acid is OK.

Injection Solvents

- If possible, injection solvents should be as close to the mobile phase composition as possible (if isocratic or the starting gradient conditions.
- A generic injection solvent is 75:25 acetonitrile:methanol. This is a good compromise between analyte solubility and peak shape. When separating saccharides with limited solubility in in organic solvents, higher concentrations of aqueous solvent in the sample are acceptable. 50:50 acetonitrile:water can provide satisfactory results.
- The injection solvent's influence on peak shape should be determined experimentally. In some cases, injections of water (or highly aqueous solutions) may not adversely affect peak shape.

Miscellaneous Tips

- For initial scouting conditions, run a gradient from 95% acetonitrile to 50% acetonitrile. If no retention occurs, run isocratically with 95:3:2 acetonitrile:methanol:aqueous buffer.
- 2. Alternate polar solvents such as methanol, acetone or isopropanol can also be used in place of water to increase retention.

Tips for Separating Sugars/Saccharides/Carbohydrates

- If separating sugars or sugar-containing compounds that do not include reducing sugars (see below follow generic 'Getting Started with XBridge Amide Columns' recommendations described above.
- 2. If separating reducing sugars, please review the following information.
- 3. Reducing sugars can undergo mutarotation which produces the undesired separation of the α and β ring forms (anomers).
- Collapsing anomers into one peak is accomplished through the use of a combination of elevated temperature and high pH:
 - a. Use of 35 °C with high pH (0.2% triethylamine (TEA) or 0.1% ammonium hydroxide (NH₄OH)) and/or
 - b. Use of >80 °C with 0.05% TEA high temperature (>80 °C)
- 5. When separating reducing sugars (e.g., fructose, glucose, maltose, lactose, arabinose, glyceraldehyde, etc.) please pay attention to the following suggestions. Failure to do so will result in the appearance of split peaks (anomer separation) for these analytes:
 - a. Operate at a slow flow rate to facilitate anomer collapse.
 - b. With longer columns, increased flow rates can be used. As with all LC separations, optimal flow rates should be determined experimentally.
 - c. Add triethylamine (TEA) or ammonium hydroxide (NH₄OH) modifiers to aqueous and organic mobile phase reservoirs at equal concentrations.
 - d. For HPLC separations of mono- and/or disaccharides using XBridge Amide columns typical isocratic conditions include:
 - i. 75% acetonitrile (ACN) with 0.2% TEA, 35 °C
 - ii. 77% acetone with 0.05% TEA, 85 °C
 - e. For HPLC separations of more complex sugar mixtures (e.g., polysaccharides) using XBridge Amide Columns typical gradient conditions include (add TEA modifier to both mobile phases A and B):
 - i. Gradient going from 80% to 50% ACN with 0.2% TEA, 35 °C,
 - ii. 80%-55% acetone with 0.05% TEA, 85 °C

f. For HPLC/MS separations of mono- and disaccharides using XBridge Amide columns typical isocratic conditions include:

i. 75% ACN with 0.1% NH₄OH, 35 °C

- g. For HPLC/MS separations of more complex sugar mixtures (tt., polysaccharides), using XBridge Amide Columns typical gradient conditions include (add NH₄OH modifier to aqueous and organic mobile phase reservoirs):
 - i. Gradient going from 75% to 45% ACN with 0.1% NH₄OH, 35 °C
- 6. More complex sample mixtures may require the use of gradient conditions and/or longer column lengths.
- 7. Typical sample preparation suggestions for samples that contain sugars/saccharides/carbohydrates:
 - a. Liquid Samples
 - i. Dilute with 50:50 ACN/H₂O
 - ii. Filter using 0.45 µm or 0.22 µm syringe filter (if necessary)
 - b. Solid Samples
 - i. Weigh out sample (~3 g) into 50 mL centrifuge tube
 - ii. Add 25 mL of 50:50 ACN/H₂O and homogenize (mechanically)
 - iii. Centrifuge at 3200 rpm for 30 minutes
 - iv. Collect supernatant and filter using 0.45 μm or 0.22 μm syringe filter (if necessary)
 - c. Depending on sample and/or analyte concentrations, additional sample dilutions may be necessary.
 - d. More complex samples and/or lower analyte concentrations may require additional sample preparation steps and/or procedures such as solid phase extraction (SPE).
 - e. Consider guard columns for column protection.

VIII. CAUTIONARY NOTE

Depending on the user's application, these products may be classified as hazardous following their use, and as such are intended to be used by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use and disposal of products rests entirely with the purchaser and user. The Safety Data Sheet (SDS) for this product is available at <u>waters.com/sds</u>.

Waters, ACQUITY, ACQUITY UPLC, Atlantis, Alliance, XBridge, BEH, VanGuard, MaxPeak, eCord, eConnect, and Empower are registered trademarks of Waters Corporation. All other trademarks are the property of their respective owners. Acrodisc is a registered trademark of Pall Corporation. PEEK is a trademark of Agilent Technologies. SLIPFREE is a trademark of Thermo Fisher Scientific Inc. All other trademarks are the property of their respective owners.

©2023 Waters Corporation. Produced in the U.S.A. November 2023 720001366EN Rev D KK-PDF

Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 waters.com