

CONTACT PHENOMENEX FOR:

- HPLC/UHPLC Columns (capillary to preparative)
- SEC Columns: Aqueous (GFC) and non-Aqueous (GPC)
- Amino Acid Analysis
- SFC Columns
- HPLC Specialty Columns for Analysis of:
 - Basic, acidic and amphoteric drugs
 - High/Low pH separations (pH 1-12)
 - Proteins/Peptides by reversed phase
 - Biopolymers Proteins and Nucleic Acids by GFC/SEC
 - Synthetic polymers
 - Foods and Beverages
 - Environmental Samples
 - Drugs in biological fluids
- HPLC Bulk Media
- HPLC Accessories such as:
 - Sample and Solvent Filters
 - SecurityGuard™ Standard Column Protection
 - Syringe Filters
 - Syringes and Vials
 - Column Heater
 - HPLC Injection Valves
 - Tubings and Fittings
- GC Columns
- GC Accessories
- Sample Preparation Products (SPE, SLE, Protein Precipitation, Filters)
- Application Development and Validation Support
- Outstanding Technical Service

TABLE OF CONTENTS

1.	Introduction	4
II.	Abnormal Pressure	5
III.	Leaks	7
IV.	Problems with the Chromatogram	9
V.	Problems with the Injector	17
VI.	Problems Detected by Smell, Sight, or Sound	18
VII.	Key Problem Areas and Preventive Maintenance	20
Protect	Your HPLC Column	22
Simple	Filtration Prior to Chromatography	23

© 2023 Phenomenex, Inc. All rights reserved.

No part of this booklet may be copied without prior written permission from Phenomenex, Inc. USA.

While every attempt has been made to ensure the accuracy of the information contained in this guide, Phenomenex assumes no responsibility for its use. We welcome any additions or corrections for incorporation into future editions.

I. INTRODUCTION

LOCATING AND CORRECTING THE PROBLEM

A systematic approach to identifying the problem is the best approach to troubleshooting your HPLC system. This guide is organized by five major categories of symptoms to help you quickly identify the source of the problem(s) you are encountering:

- pressure abnormalities
- leaks
- problems with the chromatogram
- injector problems
- other problems detected by the senses of smell, sight, and sound

When you have corrected the problem, record the incident in the system recordbook to help with future problems.

PREVENTION

Many LC problems can be prevented with routine preventive maintenance. For example, replacing pump seals at regular intervals should eliminate pump-seal failure and its associated problems. Section VII lists the most common problem areas for each LC module, and preventive maintenance practices that will reduce their frequency. These suggestions should be modified to fit your particular model of LC, and then made a regular part of your laboratory routine.

WHERE TO GET ADDITIONAL HELP

- Phenomenex has experienced technical consultants who can assist you
 with almost any problem. We welcome your phone calls, faxes or emails.
- The operator's and service manuals for the instrument should be consulted.
 These contain exploded diagrams, troubleshooting procedures for specific models, and part numbers to help you order replacement parts.
- Other people in the lab may have had experience solving a problem which is giving you trouble; they can be a helpful resource.
- The manufacturer of your instrument can help you. Most LC manufacturers offer free technical support to their customers.
- Phenomenex offers seminars on HPLC/UHPLC.
- There are a number of reference sources that can give you guidance in problem solving:
 - J.W. Dolan and L.R. Snyder, *Troubleshooting LC Systems*, Humana Press, NJ (1989).
 - L.R. Snyder and J.J. Kirkland, *Introduction to Modern Liquid Chromatography*, 2nd ed., Wiley, NY (1979).
 - D.J. Runser, *Maintaining and Troubleshooting HPLC Systems - A User's Guide*, Wiley, NY (1981).
 - J.W. Dolan, "LC Troubleshooting", LC/GC Magazine. This is a monthly column.

II. ABNORMAL PRESSURE

A change in the operating pressure is a sign that there may be a problem. Choose the category below that best fits the symptoms that you observe, and follow the suggestions to correct the problem.

A	A. No pressure reading, no flow		
PC	SSIBLE CAUSE	so	LUTION
1.	Power off	1.	Turn on power
2.	Fuse blown	2.	Replace fuse
3.	Controller setting or failure	3.	a. Verify proper settings b. Repair or replace controller
4.	Broken piston	4.	Replace piston
5.	Air trapped in pump head	5.	Degas solvents; bleed air from pump, prime pump
6.	Insufficient mobile phase	6.	a. Replenish reservoir b. Replace inlet frit if blocked
7.	Faulty check valve(s)	7.	Replace check valve(s)
8.	Major leak	8.	Tighten or replace fittings

B. No pressure reading, flow is normal

POSSIBLE CAUSE	SOLUTION
Faulty meter	1. Replace meter
Faulty pressure transducer	Replace transducer

C. Steady, high pressure

	o. Gleady, high pressure			
POSSIBLE CAUSE		SOLUTION		
1.	Flow rate set too high	1.	Adjust setting	
2.	Blocked column frit	2.	 a. Backflush column (if permitted) b. Replace frit* c. Replace column 	
3.	Improper mobile phase; precipitated buffer	3.	a. Use correct mobile phaseb. Wash column	
4.	Improper column	4.	Use proper column	
5.	Injector blockage	5.	Clear blockage or replace injector	
6.	Column temperature too low	6.	Raise temperature	
7.	Controller malfunction	7.	Repair or replace controller	
8.	Blocked guard column	8.	Remove/replace guard column	
9.	Blocked in-line filter	9.	Remove/replace in-line filter	

^{*} Check manufacturer's column warranty first. Removal of end-fittings may void column warranty.

II. ABNORMAL PRESSURE (continued)

D. Steady, low pressure		
POSSIBLE CAUSE	SOLUTION	
1. Flow set too low	1. Adjust flow rate	
2. Leak in system	2. Locate and correct	
3. Improper column	3. Use proper column	
4. Column temperature too high	4. Lower temperature	
5. Controller malfunction	5. Repair or replace controller	

E. Pressure climbing

	· ·
POSSIBLE CAUSE	SOLUTION
1. See section C	1. See section C

F. Pressure dropping to zero

1. Tressure dropping to zero			
POSSIBLE CAUSE	SOLUTION		
See sections A and B	See sections A and B		

G. Pressure dropping, but not to zero

POSSIBLE CAUSE	SOLUTION
1. See section D	1. See section D

H. Pressure cycling **POSSIBLE CAUSE** SOLUTION 1. Air in pump 1. a. Degas solvent b. Bleed air from pump Faulty check valve(s) 2. Replace check valve(s) 3. Pump seal failure 3. Replace pump seal 4. Insufficient degassing 4. a. Degas solvent b. Change degassing methods 5. Leak in system 5. Locate and correct 6. Using gradient elution 6. Pressure cycling is normal due to viscosity changes

III. LEAKS

Leaks are usually stopped by tightening or replacing a fitting. Be aware, however, that overtightened metal compression fittings can leak and plastic fingertights can wear out. If a fitting leak does not stop when the fitting is tightened a little, take the fitting apart and inspect for damage (e.g. distorted ferrule, or particles on the sealing surface); damaged fittings should be discarded.

A. Leaky fittings		
POSSIBLE CAUSE	SOLUTION	
Loose fitting	1. Tighten	
2. Stripped fitting	2. Replace	
3. Overtightened* fitting	a. Loosen and retighten b. Replace	
4. Dirty fitting	a. Disassemble and clean b. Replace	
5. Mismatched parts	5. Use all parts from same brand	

B. Leaks at pump	
POSSIBLE CAUSE	SOLUTION
Loose check valves	 a. Tighten check valve (do not overtighten) b. Replace check valve
2. Loose fittings	2. Tighten fittings (do not overtighten)
Mixer seal failure	 a. Replace mixer seal b. Replace mixer
4. Pump seal failure	4. Repair or replace
5. Pressure transducer failure	5. Repair or replace
6. Pulse damper failure	6. Replace pulse damper
7. Proportioning valve failure	7. a. Check diaphragms, replace if leaky b. Check for fitting damage, replace
8. Purge valve	a. Tighten valve b. Replace purge valve

^{*} Use fingertight end-fittings to avoid sealing problems and the need for wrenches

III. LEAKS (continued)

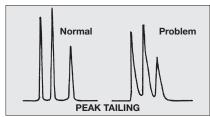
C	C. Injector leaks		
РО	SSIBLE CAUSE	SOLUTION	
1.	Rotor seal failure	1. Rebuild or replace injector	
2.	Blocked loop	2. Replace loop	
3.	Loose injection-port seal	3. Adjust	
4.	Improper syringe-needle diameter	4. Use correct syringe	
5.	Waste-line siphoning	5. Keep waste line above surface waste	
6.	Waste-line blockage	6. Replace waste line	

D. Column leaks

2. Columnicano		
POSSIBLE CAUSE	SOLUTION	
Loose endfitting	1. Tighten endfitting	
2. Column packing in ferrule	Disassemble, rinse ferrule, reassemble	
3. Improper frit thickness	3. Use proper frit (see chart below)	

E. Detector leaks

⊏.	. Detector leaks		
PO	SSIBLE CAUSE	so	LUTION
1.	Cell gasket failure	1.	a. Prevent excessive backpressureb. Replace gasket
2.	Cracked cell window(s)	2.	Replace window(s)
3.	Leaky fittings	3.	Tighten or replace
4.	Blocked waste line	4.	Replace waste line
5.	Blocked flow cell	5.	Rebuild or replace


Frit Pore Size Selection Guide

WHEN PARTICLE SIZE OF MATERIAL IS:	FRIT PORE SIZE SHOULD BE:
2 - 4 µm	0.5 μm
5 - 20 μm	2 μm

IV. PROBLEMS WITH THE CHROMATOGRAM

Many problems in the LC system show up as changes in the chromatogram. Some of these can be solved by changes in the equipment; however, others require modification of the assay procedure. Selecting the proper column type and mobile phase are keys to "good chromatography."

A	A. Peak tailing				
PC	SSIBLE CAUSE	so	SOLUTION		
1.	Blocked frit	1.	a. Reverse flush column (if allowed)b. Replace inlet frit*c. Replace column		
2.	Column void	2.	Fill void*		
3.	Interfering peak	3.	a. Use longer column b. Change mobile phase and/or column/selectivity		
4.	Wrong mobile phase pH	4.	Adjust pH. For basic compounds, lower pH usually provides more symmetric peaks		
5.	Sample reacting with active sites	5.	Add ion pair reagent or volatile basic modifier		

- - b. Change column

B. Peak fronting		
POSSIBLE CAUSE	SOLUTION	
1. Low temperature	1. Increase column temperature	
2. Wrong sample solvent	2. Use mobile phase for injection solvent	
3. Sample overload	3. Decrease sample concentration	
4. Bad column	4. See A.1. and A.2.	

C. Split peaks			
POSSIBLE CAUSE	SOLUTION		
Contamination on guard or analytical column inlet	Remove guard column and attempt analysis. Replace guard if necessary		

^{*} Check manufacturer's column warranty first. Removal of end-fittings may void column warranty.

C. Split peaks (continued)

POSSIBLE CAUSE Normal Problem SPLIT PEAKS

SOLUTION

If analytical column is obstructed, reverse and flush. If problem persists, column may be fouled with strongly retained contaminants. Use appropriate restoration procedure. If problem persists, inlet is probably plugged. Change frit or replace column

- 2. Sample solvent incompatible with mobile phase
- Change solvent. Whenever possible, inject samples in mobile phase

D. Distortion of larger peaks

POSSIBLE CAUSE

SOLUTION

1. Sample overload

1. Reduce sample size

E. Distortion of early peaks

POSSIBLE CAUSE

SOLUTION

1. Wrong injection solvent

- a. Reduce injection volume
 b. Use weaker injection solvent
- F. Tailing, early peaks more than later ones

POSSIBLE CAUSE

SOLUTION

1. Extra-column effect

- a. Replumb system
 (shorter, narrower tubing)

 b. Language and the standard of the
 - b. Use smaller volume detector cell
- G. Increased tailing as k' increases

POSSIBLE CAUSE

SOLUTION

- Secondary retention effects, reversed phase mode
- 1. a. Add triethylamine (basic samples)
 - b. Add acetate (acidic samples)
 - c. Add salt or buffer (ionic samples)
 - d. Try a different column

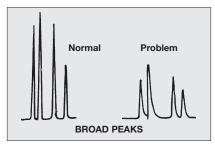
- 2. Secondary retention effects, normal phase mode
- a. Add triethylamine (basic compounds)
 b. Add acetic acid (acidic compounds)

G. Increased tailing as k' incl POSSIBLE CAUSE	reases (continued) solution
Secondary retention effects, normal phase mode	c. Add water (poly-functional compounds). Only for normal phase methods which use water-miscible solvents. d. Try a different LC method
3. Secondary retention effects, ion-pair	3. Add triethylamine (basic samples)
H. Acidic or basic peaks tail	
POSSIBLE CAUSE	SOLUTION
Inadequate buffering	 a. Use 50-100 mM buffer concentration b. Use buffer with pKa equal to pH of mobile phase
I. Extra peaks	
POSSIBLE CAUSE	SOLUTION
Other components in sample	1. Normal
2. Late-eluting peak from previous injection	a. Increase run time or gradient slope b. Increase flow rate
3. Negative or ghost peaks	a. Check purity of mobile phaseb. Use mobile phase as injection solvenc. Reduce injection volume
4. Contamination	4. Filter sample
J. Retention time drifts	
POSSIBLE CAUSE	SOLUTION
Poor temperature control	1. Thermostat column
2. Mobile phase changing	Prevent change (evaporation, reaction, etc.)
3. Poor column equilibration	Allow more time for column equilibration between runs
K. Abrupt retention time cha	nges
POSSIBLE CAUSE	SOLUTION
1. Flow rate change	Reset flow rate
2. Air bubble in pump	2. Bleed air from pump
3. Improper mobile phase	a. Replace with proper mobile phase b. Set proper mobile phase mixture on controller

1	Baseline drift		
	SSIBLE CAUSE	so	LUTION
1.	Column temperature fluctuation. (Even small changes cause cyclic baseline rise and fall. Most often affects refractive index and conductivity detectors, or UV detectors at high sensitivity or in direct photometric mode.)	1.	Control column and mobile phase temperature, use heat exchanger before detector
			Normal Problem BASELINE DRIFT
			DAGEENTE DAM 1
2.	Nonhomogeneous mobile phase. (Drift usually to higher absorbance, rather than cyclic pattern from temperature fluctuation.)	2.	Use HPLC grade solvents, high purity salts, and additives. Degas mobile phase before use, sparge with helium during use
3.	Contaminant or air buildup in detector cell	3.	Flush cell with methanol or other strong solvent. If necessary, clean cell with 1N HNO ₃ (never with HCl.)
4.	Plugged outlet line after detector. (High pressure cracks cell window, producing noisy baseline.)	4.	Unplug or replace line. Refer to detector manual to replace window
5.	Mobile phase mixing problem or change in flow rate	5.	Correct composition / flow rate. To avoid, routinely monitor composition and flow rate
6.	Slow column equilibration, especially when changing mobile phase	6.	Flush with intermediate strength solvent, run 10-20 column volumes of new mobile phase before analysis
7.	Mobile phase contaminated, deteriorated, or prepared from low quality materials	7.	Check make-up of mobile phase. Use highest grade chemicals and HPLC solvents
8.	Strongly retained materials in sample (high k') can elute as very broad peaks and appear to be a rising baseline. (Gradient analyses can aggravate problem.)	8.	Use guard column. If necessary, flush column with strong solvent between injections or periodically during analysis
9.	Mobile phase recycled but detector not adjusted	9.	Reset baseline. Use new mobile phase when dynamic range of detector is exceeded
10	Detector (UV) not set at absorbance maximum but at slope of curve	10.	Change wavelength to UV absorbance maximum

N	M. Baseline noise (regular)			
PC	SSIBLE CAUSE	sc	LUTION	
1.	Air in mobile phase, detector cell, or pump	1.	Degas mobile phase. Flush system to remove air from detector cell or pump	
2.	Leak	2.	See section III. Check system for loose	
	Normal		fittings. Check pump for leaks, salt build- up, unusual noises. Change pump seals	
	Problem		if necessary	
	BASELINE NOISE			
3.	Incomplete mobile phase mixing	3.	Mix mobile phase by hand or use less viscous solvent	
4.	Temperature effect (column at high temperature, detector unheated)	4.	Reduce differential or add heat exchanger	
5.	Other electronic equipment on same line	5.	Isolate LC, detector or recorder to determine if source of problem is external. Correct as necessary	
6.	Pump pulsations	6.	Incorporate pulse dampener into system	

N. Baseline noise (irregular)


POSSIBLE CAUSE			SOLUTION		
1.	Normal Problem BASELINE NOISE	1.	See section III. Check for loose fittings. Check pump for leaks, salt build- up, unusual noises. Change seals if necessary. Check for detector cell leak		
2.	Mobile phase contaminated, deteri- orated, or prepared from low quality materials	2.	Check make-up of mobile phase		
3.	Mobile phase solvents immiscible	3.	Select and use only miscible solvents		
4.	Detector/recorder electronics	4.	Isolate detector and recorder electronically. Refer to instruction manual to correct problem		
5.	Air trapped in system	5.	Flush system with strong solvent		
6.	Air bubbles in detector	6.	Purge detector. Install backpressure device after detector		

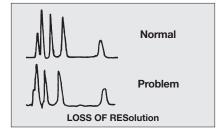
N	N. Baseline noise (irregular) continued		
PO	SSIBLE CAUSE	so	LUTION
7.	Detector cell contaminated (even small amounts of contaminants can cause noise)	7.	Clean cell by flushing with 1N HNO ₃ (never with HCl)
8.	Weak detector lamp	8.	Replace lamp
9.	Column leaking silica or packing material	9.	Replace column
10	. Mobile phase mixer inadequate or malfunctioning	10	. Repair or replace the mixer or mix off-line if isocratic

O Broad peaks

POSSIBLE CAUSE		SOLUTION	
1.	Mobile phase composition changed	1.	Prepare new mobile phase
2.	Mobile phase flow rate too low	2.	Adjust flow rate
3.	Leaks (especially between column and detector)	3.	See section III. Check for loose fittings. Check pump for leaks, salt build-up, and unusual noises. Change seals if necessary
4.	Detector settings incorrect	4.	Adjust settings

- 5. Extra-column effects:
 - a. Column overloaded
 - b. Detector response time or cell volume too large
 - c. Tubing between column and detector too long or ID too large
 - d. Recorder response time too high

- 5. a. Inject smaller volume (e.g., 10 μL vs. 100 μL) or 1:10 and 1:100 dilutions of sample
 - b. Reduce response time or use smaller cell
 - c. Use as short a piece of 0.005-0.007 in. ID tubing as practical
 - d. Reduce response time


O. Broad peaks (continued)			
POSSIBLE CAUSE	SOLUTION		
6. Buffer concentration too low	6. Increase concentration		
7. Guard column contaminated/worn out	7. Replace guard column		
Column contaminated / worn out. Low plate number	Replace column with new one of same type		
9. Void at column inlet	 Open inlet end* and fill void or replace column 		
Peak represents two or more poorly resolved compounds	Change column type to improve separation		
11. Column temperature too low	11. Increase temperature. Do not exceed 60 °C unless higher temperatures are acceptable to column manufacturer		
12. Detector time constant too large	12. Use smaller time constant		

P. Loss of resolution

POSSIBLE CAUSE		SOLUTION	
1.	Mobile phase contaminated / deteriorated (causing retention time to change)	1.	Prepare new mobile phase

2. Obstructed guard or analytical column

 Remove guard column and attempt analysis. Replace guard if necessary. If analytical column is obstructed, reverse and flush. If problem persists, column may be fouled with strongly retained contaminants. Use appropriate restoration procedure. If problem persists, inlet is probably plugged. Change frit or replace column

^{*} Check manufacturer's column warranty first. Removal of end-fittings may void column warranty.

Q. All peaks too small	
POSSIBLE CAUSE	SOLUTION
1. Detector attenuation too high	Reduce attenuation
2. Detector time constant too large	2. Use smaller time constant
3. Injection size too small	 a. Increase sample concentration b. Increase injection volume, if column size allows
4. Improper recorder connection	4. Use correct connection
R. All peaks too large	
POSSIBLE CAUSE	SOLUTION
Detector attenuation too low	Use larger attenuation
. Dototoi attoriaation too low	1. Odd larger attoridation
Injection size too large	a. Reduce sample concentration b. Decrease injection volume, use a smaller sample loop or use partial loop filling

V. PROBLEMS WITH THE INJECTOR

These problems are usually detected while you are using the injection valve. Leaky injection valves are discussed in Section III (Leaks).

A. Manual injector, hard to turn		
POSSIBLE CAUSE	SOLUTION	
Damaged rotor seal	Rebuild or replace valve	
2. Rotor too tight	Adjust rotor tension	

B	B. Manual injector, hard to load		
PC	POSSIBLE CAUSE SOLUTION		
1.	Valve misaligned	1.	Adjust alignment
2.	Blocked loop	2.	Replace loop
3.	Dirty syringe	3.	Clean or replace syringe
4.	Blocked lines	4.	Clear or replace lines

C. Autoinjector, won't turn		
POSSIBLE CAUSE	SOLUTION	
No air pressure (or power)	Supply proper pressure (power)	
2. Rotor too tight	2. Adjust	
Valve misaligned	3. Adjust alignment	

D. Autoinjector, other problems		
POSSIBLE CAUSE SOLUTION		
1. Blockage	1. Clear or replace blocked portion	
2. Jammed mechanism	2. See service manual	
Faulty controller	Repair or replace controller	

VI. PROBLEMS DETECTED BY SMELL, SIGHT OR SOUND

You need to use all your senses to identify LC problems. You should get in the habit of taking a few minutes each day to expose all of your senses (except taste!) to the LC so that you can get a "feel" for how the LC performs normally. This will help you to quickly locate problems. For example, often you can smell a leak before you see it. The majority of problems are identified by sight; most of these are included in the preceding section.

A. Solvent smell		
POSSIBLE CAUSE	SOLUTION	
1. Leak	See section III	
2. Spill	a. Check for overflowing waste container b. Locate spill and clean up	

B. "Hot" smell	
POSSIBLE CAUSE	SOLUTION
Overheating module	a. Check for proper ventilation, adjust b. Check temperature setting, adjust c. Shut module off, see service manual

C. Abnormal meter readings		
PC	SSIBLE CAUSE	SOLUTION
1.	Pressure abnormality	1. See section II
2.	Column oven problem	 a. Check settings, adjust b. See service manual
3.	Detector lamp failing	3. Replace lamp

D. Warning lamps		
POSSIBLE CAUSE	SOLUTION	
Pressure limit exceeded	 a. Check for blockage b. Check limit setting, adjust 	
Other warning lamps	See service manual	

VI. PROBLEMS DETECTED BY SMELL, SIGHT OR SOUND (continued)

E. Warning buzzers			
POSSIBLE CAUSE	SOLUTION		
1. Solvent leak / spill	1. Locate and correct		
2. Other warning buzzers	2. See service manual		
F. Squeaks and squeals			
r. Squeaks and squeats			
POSSIBLE CAUSE	SOLUTION		
	SOLUTION 1. See service manual		
POSSIBLE CAUSE			

VII. KEY PROBLEM AREAS AND PREVENTIVE MAINTENANCE

The chart below lists the most common problems that occur with each LC module. In the right-hand column are listed preventive maintenance practices that can reduce the failure rate. The numbers in parentheses are suggested intervals between maintenance. The operator's and service manuals for your LC may have additional suggestions for preventive maintenance of your model of LC.

Reservoir	
PROBLEM	PREVENTIVE MAINTENANCE
Blocked inlet frit	 a. Replace (3-6 mo.) b. Filter mobile phase, 0.5 µm filter
2. Gas bubbles	2. Degas mobile phase
Pump	
PROBLEM	PREVENTIVE MAINTENANCE
1. Air bubbles	 Degas mobile phase
2. Pump seal failure	2. Replace (3 mo.)
3. Check valve failure	 Filter mobile phase, use inlet-line frit. Keep spare
Injector	
PROBLEM	PREVENTIVE MAINTENANCE
Rotor seal wear	 a. Don't overtighten b. Filter samples
Column	
PROBLEM	PREVENTIVE MAINTENANCE
1. Blocked frit	 a. Filter mobile phase b. Filter samples c. Use in-line filter and/or guard column
2. Void at head of column	2. a. Avoid mobile phase pH > 8 (most

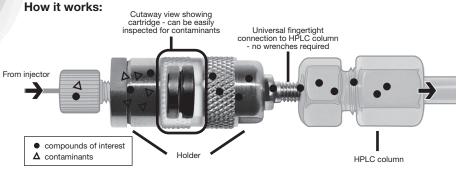
silica-based columns)
b. Use guard column

c. Use precolumn (saturator column)

VII. KEY PROBLEM AREAS AND PREVENTIVE MAINTENANCE (continued)

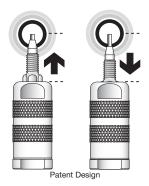
Detector	
PROBLEM	PREVENTIVE MAINTENANCE
Lamp failure; decreased detector response; increased detector noise	1. Replace (6 mo.) or keep spare lamp
2. Bubbles in cell	a. Keep cell cleanb. Use restrictor after cellc. Degas mobile phase
General	
PROBLEM	PREVENTIVE MAINTENANCE
Corrosive/abrasive damage	Flush buffer from LC and clean when not in use

WARNING: CONTAMINANTS CAN CAUSE


- High Backpressure
- Split Peaks
- Broad Peaks
- Baseline Noise
- Baseline Drift
- Loss of Resolution
- Irreversible Column Damage
- System Damage

PROTECT YOUR HPLC COLUMN AND RESULTS

A universal HPLC guard cartridge system designed to effectively protect your valuable analytical columns and results from the damaging effect of contaminants. Trap contaminants without altering your chromatography.


Additional information can be found at www.phenomenex.com/securityguard

Universal fit:

With the patented design, SecurityGuard Standard can adjust to fit virtually any manufacturer's female/inverted endfitting.

SecurityGuard and BE-HAPPY are trademarks of Phenomenex.

SecurityGuard is patented by Phenomenex. U.S. Patent No. 6,162,362. CAUTION: this patent only applies to the analytical-sized guard cartridge holder, and does not apply to SemiPrep, PREP or ULTRA holders, or to any cartridges.

PHENEX™ SYRINGE FILTERS

For Sample and Solvent Filtration Prior to Chromatography

- Less system downtime
- · More consistent, reproducible results
- · Increased column lifetime

- Low protein adsorption
- Broad chemical compatibility
- Minimized extractables
- · Excellent flow rate
- · High total throughput
- Low hold-up volume
- · Certified quality
- 100 % integrity tested
- Bi-directional use

SYRINGE FILTER FINDER

3-step tool designed to help you find the appropriate syringe filter to help you successfully remove particulates from your sample matrix.

www.phenomenex.com/SFfinder

MEMBRANE TYPES	
RC (Regenerated Cellulose)	NY (Nylon)
PTFE, Teflon® (Polytetrafluoroethylene)	CA (Cellulose Acetate)
PES (Polyethersulfone)	GF (Glass Fiber)
PVDF (Polyvinylidene Fluoride)	

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

Above syringe filters are non-sterile.

Housing is made of medical-grade polypropylene (PP).

Tip: Try a Sample Pack!

The best way to determine if a specific Phenex membrane is suitable for your application. Request yours today by phone or visit www.phenomenex.com/sample

Phenex and BE-HAPPY are trademarkst of Phenomenex.

Teflon is a registered trademark of E.I. du Pont de Nemours and Co.

This publication is distributed free of charge. Additional copies are available from:

Australia

+61 (0)2-9428-6444 auinfo@phenomenex.com

Austria

t: +43 (0)1-319-1301 anfrage@phenomenex.com

Belgium

t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch) beinfo@phenomenex.com

Canada

t: +1 (800) 543-3681 info@phenomenex.com

China

t: +86 400-606-8099 cninfo@phenomenex.com

Czech Republic

t: +420 272 017 077 cz-info@phenomenex.com

Denmark

t: +45 4824 8048 nordicinfo@phenomenex.com

Finland

t: +358 (0)9 4789 0063 nordicinfo@phenomenex.com

France

t: +33 (0)1 30 09 21 10 franceinfo@phenomenex.com

Germany

t: +49 (0)6021-58830-0 anfrage@phenomenex.com

Hong Kong

t: +852 6012 8162 hkinfo@phenomenex.com

t: +91 (0)40-3012 2400 indiainfo@phenomenex.com

Indonesia

t: +62 21 3952 5747 indoinfo@phenomenex.com

t: +353 (0)1 247 5405 eireinfo@phenomenex.com

t: +39 051 6327511 italiainfo@phenomenex.com

t: +81 (0) 120-149-262 ipinfo@phenomenex.com

Luxembourg t: +31 (0)30-2418700 nlinfo@phenomenex.com

Mexico

t: 01-800-844-5226 tecnicomx@phenomenex.com

The Netherlands

t: +31 (0)30-2418700 nlinfo@phenomenex.com

New Zealand

t: +64 (0)9-4780951 nzinfo@phenomenex.com

Norway t: +47 810 02 005 nordicinfo@phenomenex.com

Poland

t: +48 22 51 02 180 pl-info@phenomenex.com

Portugal

t: +351 221 450 488 ptinfo@phenomenex.com

Singapore

t: 800-852-3944 sginfo@phenomenex.com

t: +420 272 017 077 sk-info@phenomenex.com

Spain

t: +34 91-413-8613 espinfo@phenomenex.com

Sweden

t: +46 (0)8 611 6950 nordicinfo@phenomenex.com

Switzerland

t: +41 (0)61 692 20 20 swissinfo@phenomenex.com

t: +886 (0) 0801-49-1246 twinfo@phenomenex.com

Thailand

t: +66 (0) 2 566 0287 thaiinfo@phenomenex.com

United Kingdom

t: +44 (0)1625-501367 ukinfo@phenomenex.com

t: +1 (310) 212-0555 www.phenomenex.com/chat

All other countries/regions Corporate Office USA

t: +1 (310) 212-0555 www.phenomenex.com/chat

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country/region, contact Phenomenex USA, International Department at international@phenomenex.com